sesa goa iron ore

CII National Awards for Excellence in Energy Management 2023

sesa goa iron ore

VALUE ADDED BUSINESS

Team Member : Ashish Dhanopia –Head – Energy & Carbon

Deepak Kumar- Head- PID-1 Operations

Organization Profile

- India's largest merchant pig iron plant with production capacity of 1 MTPA, was first to introduce mini blast furnace concept in India.
- Patented environment friendly heat recovery coke making technology.
- First CDM project in waste heat recovery category.
- First to introduce ultra low S , SG grade pig Iron in India.
- We are ISO 50001:2018, ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 certified unit.

VISION

To be the highest value creator in the iron ore industry contributing to the growth of the nation

MISSION

- To continue to maintain our pre-eminent position safety, environment and quality control in management in the respective industry sectors.
- To maximise stakeholder wealth by exploiting core skills of iron ore mining, coke and iron making.
- To constantly seek high levels of productivity and technical efficiency; to maintain technological superiority over competitors.
- To aggressively seek additional resources.
- To maintain costs in the lowest decile globally.
- To be an organization with best-in-class people and a performance driven culture by attracting and retaining quality manpower.
- To contribute to the development of the communities that we operate in or have influence on our business activities.

CORE VALUES trust We actively foster a culture of As we continue to grow, we are mutual trust in our interactions with committed to the triple bottom line of our stakeholders and encourage People, Planet and Prosperity, to create an open dialogue which ensures a sustainable future in a zero harm mutual respect. environment for our communities integrity respec le place utmost importance to We lay consistent emphasis a human rights, respect the principle engaging ethically and transparently with all our stakeholders, taking of free, prior, informed consent accountability of our actions to while our engagements with maintain the highest standards of stakeholders give local communities professionalism and complying with the opportunity to voice their international policies and procedures. opinions and concerns excellence innovatio Our primary focus is delivering value We embrace a conducivi of the highest standard to our environment for encouraging pakehoiders. We are constantly innovation that leads to a Zero harr motivated on improving our costs and environment and exemplifying our guality of production in each of optimal utilization of natural our business through a culture of best resources, improved efficiencies practice benchmarking. and recoveries of by-products enfrepreneu At Vedanta, our people are our mos

important assets. We actively encourage

their development and support them in pursuing their goals

SESA'S Journey – Key milestones

sesa goa iron ore

TOTAL ENERGY INPUT

ENERGY CONSUMPTION TREND 5 YEARS

sesa goa iron ore

Electricity Consumption at a Glance

sesa goa iron ore

*As per power consumption data of FY' 22-23

BENCHMARKING

sesa goa iron ore

Source: Benchmarking Visits and Internal connects

Energy Conservation Projects

Year of Implementatio n	ATEGORY	Title of Energy saving Project Implemented	Total Annual Savings	Investment s Made	Payback in Months
	Ũ		Rs. Millions	Rs Millions	Wonths
		Reduction of total carbon bearing material rate in BF operation from 6Kg/THM through oxygen enrichment	83.2	200	28.8
	F 9 1 F 1 S	Power plant Turbine Upgradation to increase generation by 5 MW	100.8	200	23.8
2022-23		Install variable frequency drive (VFD) for air compressor in power plant 1 and 2	0.3	0.8	33.1
		Install VFD for combustion air blower & operate at reduced speed	0.1	0.3	36.0
		Installation of CO analyzer to supply sufficient air to boiler in PP-2	2	0.48	4.8
Zer	o Ir	vestment Innovation Replacement	Process Co	nt. Autor	nation

Year of Implementatio	Title of Energy saving Project Implemented		Total Annual Savings	Investment s Made	Payback in Months	
	C		Rs. Millions	Rs Millions	wonths	
		Replacing the old Slag Granulation pumps with energy efficient pumps	0.6	1	20	
2022-23	Replacing the old furnace Return water pump with energy efficient pump		2.2	2	11	
		Replacement of HPSV lamps to LED lamps at PID-2	0.1	2	240	
				Connecting under-loaded slag drier motors in star mode.	0.8	0
		Replacement of 2 nos. blower motors with IE4 motors	0.5	2	48	
Zero	In	vestment Innovation Replacement	Process Con	t. 📃 Autom	ation 11	

sesa goa iron ore

Year of Implementatio	atio ☐ Title of Energy saving Project Implemented		Total Annual Savings	Investment s Made	Payback in			
	5		Rs. Millions	Rs Millions	wonths			
	22 Repla pump 22 Instal speed	Reduction of total carbon bearing material rate in BF operation from 630 Kg/THM to 614 Kg/THM through furnace relining, design modification & level-2 automation	378	800	25.4			
2021-22			Replacement of ACW pumps in PP1 with energy efficient pumps	0.30	1.2	47.6		
					Install VFD for main cooling water pumps in sinter plant	0.20	0.6	35.7
			Install VFD for combustion air blower & operate at reduced speed	0.1	0.3	36.0		
		Replacement of existing motors with IE4 motors	0.24	2.0	100			
Zer	o Ir	vestment Innovation Replacement	Process Co	nt. 🦲 Auton	nation 12			

13

Year of Implementatio	f 장이 Title of Energy saving Project Implemented		Total Annual Savings	Investment s Made	Payback in Months
	5		Rs. Millions	Rs Millions	WORLIS
		Replacement of compressor with energy efficient compressor	0.30	1.5	59.5
		CT shaft material from SS to com. Fiber for 3 fans	0.18	0.20	11
2021-22		Replacement of HPSV lamps to LED lamps at PID-2 dispatch high mast tower	0.085	0.5	70
		Connecting under-loaded Runner cooling fan motors in star mode.	0.8	0	-
		Conversion of 20% of conventional lamps with LED lamps	0.5	2	48
Zero	In	vestment Innovation Replacement	Process Con	it. 📃 Autom	ation 13

Zero Investment

14

Year of Implementatio	ATEGORY	Title of Energy saving Project Implemented	Total Annual Savings	Investment s Made	Payback in
	2		Rs. Millions	Rs Millions	wonths
		Coke rate reduction of blast furnace operation from 633 Kg/THM to 630 Kg/THM through process optimization	61.44	40	7.87
		Sinter plant main exhaust fan duct leakage arresting.	2.4	1	6
2020-21		STG overhauling along with condenser chemical cleaning to reduce specific steam consumption by 0.5 TPH.	2.4	0.2	1
		Reducing run hours of PWD pump for quench tower water by fixing motorized flow control valve at CNO7	0.1	0.1	12
		All lighting circuits provided with PLC automation/timer to eliminate wastage when not required.	0.4	0.3	9
Zero	n In	vestment Innovation Replacement	Process Con	it. <mark>Auto</mark> m	ation

Zero Investment

Year of Implementatio	Title of Energy saving Project Implemented		Total Annual Savings	Investment s Made	Payback in Months
	C		Rs. Millions	Rs Millions	WORTIS
		Conducting Compressed air leakage audit and arresting leaking points in MCD and PP	0.4	0.1	3
2020-21	C	Conversion of 20% of conventional lamps with LED lamps	0.5	2	48
		Conducting Compressed air leakage audit and arresting leaking points in PID-2	0.4	0.2	6
		Reduction in coke breeze consumption in sinter plant.	0.75	2.00	32
		Installed voltage controller for high mast tower (5 nos.)	0.02	0.02	10

15

GHG EMISSION REDUCTION

GHG REDUCTION-ROADMAP

- Relining of BF-3
- Increase in power generation thru. WHRPP turbine upgradation.
- PCI Increase from 62 Kg/T to 125 Kg/T
- Solar PP- 3 MW
- CCUS -10 TPD (Pilot Project)
- Addition of Fe-Si in PID-1
- Using High Grade Ore in BF
- Process Optimization.
- Gunning of BF-2

- Natural Gas usage in BF (R&D)
- Hydrogen in PCI (R & D)

- Sinter waste heat recovery- Power Generation.
- CCUS- 50TPD
- Solar Power Plant- 10MW

VAB- GREEN STRATEGY (GHG REDUCTION)

sesa goa iron ore

Coke Drying from waste heat of sinter cooler

Increase in PCI Injection from design modification

Waste heat recovery power plant turbine upgradation to increase generation from 30 MW to 35 MW.

Accretion dislodging by liquid co₂ activation in blast furnace

Introduction of Dual Burners in Sinter plant ignition furnace.

Selective utilization of waste in Sinter plant to reduce fuel consumption.

Coke drying from waste Heat

sesa goa iron ore

Brief description of system

- Tap the hot air (gas) from sinter cooler waste heat recovery boiler exhaust at high heat zone and passed through duct towards ID Fan. The air at outlet of ID fan passed towards stock house via ducting.
- At stock house the hot air distributed in existing bunkers by our special nozzles evenly. The gas will pass from bottom of charge bed and exit from top. During this process the charge will be dried and its temperature will reach up to 85-90 deg C max

Benefits:

- Reduction in coke rate by 5-10 Kg/THM.
- Energy saving of approx. ~4000 Mkcal.
- GHG emission reduction by 9000 Tons of CO2e.

Schematic drawing of heating system from waste heat

Nozzle arrangement at the Bunker

Increase in PCI Injection from design modification

sesa goa iron ore

After

Before

PCI Injection system conveying line size was having pipeline of size of 65 MM Inner dia , due to this PCI injection rate was 8.5 tph only where as furnace acceptance or demand was of 12 tph

Changing the conveying line size dia from 65 MM inner dia to 80 MM inner dia pipeline,PCI injection system injection rate increased from 8.5tph to 12 tph rate

Result

Benefits Achieved

- Production increased by 20 Tons per day.
- Cost of Production reduced by 500 Rs/thm.
- Reduction in GHG emissions by 18021 tons of CO2e

PP- Turbine Capacity Upgradation

Basic changes include,

- Turbine rotor upgradation with optimized blade profile
- Replacement of Guide blade carrier
- Replacement of labyrinth

S.No	Parameter	UOM	Normal	Post retrofit
			Operating	Value
1	Maximum power output	MW	30	35.25
2	Steam Flow at Turbine I/L	TPH	123	129
3	Specific steam consumption	Kg/Kwh	4.1	3.67
4	Turbine Heat Rate	Kcal/Kwhr	2600	2412
5	Turbine exhaust pressure	ata	-0.78	-0.88
6	Turbine exhaust temperature	Deg. Celsius	60	48.41
7	Flow at turbine exhaust	TPH	98	106.47
8	Shutdown duration for revamping	Days	-	30 days
9	Generator MVA rating	MVA	37	31.5

Waste heat recovery power plant turbine upgradation to increase generation from 30 MW to 35 MW

- 1. Increase in generating capacity from 30 MW to 35 MW
- 2. Additional generation potential of 42 MU's in a year.
- 3. Improvement in heat rate from 2600 Kcal/KWh to 2412 Kcal/KWh.
- 4. GHG emission reduction of 29820 TCO_2 in a year

Waste heat recovery Power Plant – Turbine Upgradation

Intangible Benefits

INDUSTRY BENEFITS

- Domestic Consumption & Better realization of Natural resources
- Low Manufacturing Cost

SOCIETAL BENEFITS

- •Improved Contribution to CSR Initiatives
- •Customers Improved Internal and External Customer satisfaction

EMPLOYEE BENEFITS

- Consistency in rewarding employees.
- Project success boosts morale of team and ignite their desire to further excel .
- •Innovation Team takes lead to innovate .

REPORTING & MONITORING SYSTEM

DAILY SEC DEVIATION- ANALYSIS

sesa goa iron ore

	SPECIFIC POWER CONSUMPTION(KWH/THM)									
DATE	PRODUCTION BLOWER		STOCK HOUSE	CAST HOUSE	BF ACCESSORIES & HBS	PCI	CWPS & COMPRESS	TOTAL		
20-07-22	1418	88	8.7	5.0	8.8	3.5	28.0	147		
21-07-22	1400	90	8.8	6.2	8.9	3.5	27.4	150		
22-07-22	1405	90	8.9	6.2	8.4	3.2	28.1	151		
23-07-22	1455	104	8.3	6.0	8.1	3.3	26.5	161		
24-07-22	1440	100	9.1	6.6	8.0	3.5	27.1	160		
25-07-22	1400	106	9.5	6.3	8.4	3.6	28.0	167		
26-07-22	1401	106	8.7	5.3	8.4	3.8	27.7	167		
27-07-22	1416	104	8.5	5.3	8.2	3.5	27.1	162		

Day Deviations Hours	No Dev	viation	No Deviation		No Deviation		
Month Deviations Hours	No Dev	viation	No Deviation		No Deviation		
BENCHMARK RUN HOUR	run hour: 2	ır: 24 hrs/day run hour: 24 hrs/day run hour: 24 l		y run hour: 24 hrs/day run hour: 24 hr		24 hrs/day	
Date	BF1 CB5 MOTOR1	BF1 CB5 MOTOR2	BF2 CB5 MOTOR1	BF2 CB5 MOTOR2	BF1 60 HP PUMP-1	BF1 60 HP PUMP-2	
01-04-2022	24	0	0	0	24	0	
02-04-2022	24	0	0	0	24	0	
03-04-2022	24	0	0	0	24	0	
04-04-2022	24	0	3	0	24	0	
05-04-2022	24	0	23	0	24	0	
06-04-2022	24	0	24	0	24	0	

	DRIVES	BLOWER	STOCK HOUSE	CAST HOUSE	BF ACCESSORIES & HBS	PCI	CWPS & COMPRESSOR	TOTAL CONSUMPTION	Run Hours monitoring
	POWER CONSUMPTION KWH	127655.00	11489.00	8060.00	9981.00	3349.00	37851	208962.00	
	BENCHMARK KWH	129719	10990	7781	11217	3448	37633	207576	
	SPECIFIC POWER CONSUMPTION KWH/THM	92.99	8.37	5.87	7.27	2.44	28	152	
	BENCHMARK KWH/THM	88.8487	7.5274	5.3291	7.6827	2.3614	25.7762	142.1752	
	% Deviation	4.67%	11.19%	10.18%	-5.36%	3.32%	6.97%	7.07%	
Deviation monitoring	DEVIATION REMARKS	1) (+)5.6KWH/T IS DUE TO LESS PRODUCTION 2) (-)0.3KWH/T IS DUE TO LESS CONSUMPTION BY BLOWER DUE TO LOW WIND	2) (+)0.3KWH/T IS DUE TO EXCESS CONSUMPTION BY STOCK HOUSE DEDUSTING FAN BENCHMARK IS 5303 AND ACTUAL IS 5790. ALSO JOCKEY PUMP HAS CONSUMSED MORE POWER DUE TO EXCESS RUN HOURS	1) (+)0.4KWH/T IS DUE TO LESS PRODUCTION 2) (+)0.42KWH/T IS DUE TO EXCESS CONSUMPTION BY CHDD FAN			1) (+)1.6KWH/T IS DUE TO LESS PRODUCTION 2) (+)0.1KWH/T IS DUE TO EXCESS CONSUMPTION BY COMPRESSORS AND HOT WELL PUMPS		Reasons for Deviation

Hours nitoring

Continual Improvement- Energy Management System

sesa goa iron ore

MANAGERIAL

PLAN:

- Policy/goals/targets
- Resources

DO:

- Training
- Communication
- Control equipment systems & processes

CHECK:

- Corrective/
 preventive action
- Internal audits

ACT:

 Management review

TECHNICAL

PLAN:

- Energy data
- management
- Assessments

DO:

- Energy purchasing
- Design
- Projects
- Verification

CHECK:

- Monitoring
- Measurement

ACT:

System
 performance

ENERGY POLICY, ENCON CELL & ISO IMPLEMENTATION

sesa goa iron ore

STACK HOLDER ENGAGEMENT

sesa goa iron ore

WORKMEN AWARENESS

REWARDS & RECOGNITION

STUDENTS AWARENESS

POSTER COMPETITION

ENCON DAY CELEBRATION

ENCON PLEDGE

Waste Heat Utilization

COKE PLANT

WASTE HEAT RECOVERY POWER PLANT

PIG IRON PLANT

Waste heat Utilization

Power Generation – Waste Heat

Clean Energy to State Electricity Grid

Around 2000 Million units (KWH) generated in last 5 years

- Around 900 Million units (KWH) of clean power given to state elec. Board.
- Eliminated usage of diesel in slag drier plant by waste heat.
- Waste gases used in Pulverized coal injection plant and sinter plant.
- Invested around Rs. 20 Crs. to increase clean power generation by 5 MW through turbine upgradation.

WASTE MANAGEMENT

	Hazardous wastes								
Sr.no	Type of wastes	Mode of disposal							
1	Used / spent oil	Sold to recycler registered with CPCB & having valid authorization of SPCB.							
2	Waste residue containing oil	Incinerated in coke oven plant							
3	Empty /discarded paint tins	To recycler registered with CPCB and having valid authorization of SPCB							

	Non Hazardous Wastes								
Sr.no	Type of wastes	Mode of disposal							
1	Slag	Used in manufacturing of cement							

PAT CYCLE-2 ACHEIVEMENT

sesa goa iron ore

% Energy cons. reduction from projects

Utilization of Renewable Energy Sources

- Although our entire power consumption is met from waste heat recovery power plant, as a ESG initiative, we are coming up with 100 KW solar PP, installed at rooftop of our admin office and car parking.
- Installing EV fast charging stations at various locations of our plant, to promote sustainable transport.
- Vedanta has rolled out EV incentive policy, through which we are provide financial assistance to our employees of upto Rs. 5L while purchase of EV.

Thank You !

